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Parameter estimation in biochemical signaling models is challenging due to sparse, noisy measure-
ments and the multi-scale nature of cellular processes. Physics-Informed Neural Networks (PINNs)
and Systems-Biology Informed Neural Networks (SBINNSs) help infer unknown parameters from
ordinary differential equation (ODE) models, but their performance degrades when dynamics span
multiple spatial and temporal scales, or when interactions couple partial differential equations (PDEs)
and ODEs.

We introduce Physics—Biology Hybrid Neural Operators (PB-HNO), a multi-scale framework that
learns coupled ODE-PDE dynamics under mechanistic constraints from limited observations. PB-
HNO integrates Fourier Neural Operators (FNOs) for spatially extended PDE processes with Neural
ODE modules for intracellular reaction kinetics, coupled through differentiable ligand-receptor
boundary operators and a domain-decomposed latent state. Beyond parameter discovery, PB-HNO
includes a differentiable predictive control layer that computes intervention signals (e.g., ligand
pulses, inhibitor schedules) to steer the system to target phenotypes.

Across synthetic and literature-informed case studies for Notch (juxtacrine), Wnt (morphogen)
and MAPK (phosphorylation cascade) pathways, PB-HNO yields accurate parameter recovery and
robust forecasting under sparse, noisy sampling, and outperforms SBINNs and standard neural
operators. Ablations highlight the value of multi-scale coupling and physics residuals. We release a

fully reproducible training protocol with identifiability diagnostics and control synthesis.

I. INTRODUCTION

Cellular signaling governs differentiation, proliferation, and fate decisions. Its dynamics span spatial and temporal
scales: secreted ligands form gradients across tissues, receptors bind at membranes, and downstream gene regulation
unfolds over hours to days. Multi-scale processes complicate parameter identification and forecasting, especially when
measurements are partial, irregular, and noisy.

Mechanistic models describe intracellular reactions by ODEs and spatial transport by PDEs. Missing parameters—
rate constants, diffusion coefficients, binding affinities—limit predictive power. Inverse modeling seeks to infer these
parameters from limited observations, enabling hypothesis testing and rational intervention design. Physics-informed
learning approaches (PINNs/SBINNs) embed known equations into neural training objectives, improving data efficiency.
However, three limitations persist: (i) most applications are single-scale; (ii) performance degrades under sparse/noisy
sampling; (iii) models typically predict but do not control.

We address these challenges with Physics—Biology Hybrid Neural Operators (PB-HNO), a unified architecture that



couples an FNO-based PDE solver with a Neural-ODE reaction module through differentiable boundary operators
and shared latent states. PB-HNO performs parameter discovery, state estimation, and predictive control within one

end-to-end differentiable program.

a. Contributions.

1. Multi-scale ODE-PDE learning. A neural-operator architecture that learns ligand transport (PDE) and

intracellular kinetics (ODE) jointly under mechanistic constraints.

2. Identifiability-aware parameter discovery. A loss design combining data terms, physics residuals, boundary

operators, and Bayesian priors with sensitivity-based reweighting to improve practical identifiability.

3. Predictive control. A differentiable model predictive control (MPC) layer that proposes interventions to realize

target phenotypes subject to learned dynamics and biochemical limits.

4. Reproducible pipeline. A training protocol including structural/practical identifiability checks, ablative diagnos-

tics, and robustness sweeps to noise and sampling sparsity.

II. RELATED WORK

Mechanistic modeling of pathways. Deterministic ODE models capture intracellular reaction networks,
while PDEs capture spatial transport and gradient formation. Hybrid ODE-PDE models have long been used in
morphogenesis and signaling.

Physics-informed learning. PINNs embed equation residuals into losses for inverse problems in PDEs/ODEs.
SBINNS specialize to systems biology with parameter recovery under partial observation. These methods can struggle
with stiffness, multi-scale coupling, and irregular sampling.

Neural operators. FNOs, DeepONets, and related operator learners approximate solution maps between function
spaces, offering fast surrogates for parametric PDEs. Applications span fluid dynamics, climate and materials; cellular

signaling has received less attention, especially in ODE-PDE coupling.

Learning for control. Differentiable control layers and MPC have been integrated with deep models, and control
concepts have been applied to synthetic biology. We contribute a control layer tailored to biochemical constraints and

learned multi-scale dynamics.

III. MULTI-SCALE MODELING: ODE-PDE COUPLING

Consider a 2D tissue domain Q C R? with cells indexed by i = 1,..., N, and membranes I'; C 99Q. Let L(z,t) denote

ligand concentration, and z;(t) € R™ intracellular states (e.g., receptor occupancy, NICD, transcription factors).



A. Spatial transport with membrane coupling

We model ligand transport by
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where D > 0 is a diffusion coefficient, ; a binding rate, ® a boundary consumption operator, and .S sources. Boundary

conditions may include flux at membranes and Neumann elsewhere:
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B. Intracellular reaction kinetics

For each cell i,
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with parameters 6 (rate constants, affinities). Functions f, ®, U encode known biochemistry (Michaelis-Menten, Hill,

mass action).

C. Identifiability notions

Definition 1 (Structural identifiability). Parameters 6 are structurally identifiable if distinct 6 # 6’ cannot produce

identical outputs for all admissible inputs and initial conditions.

Definition 2 (Practical identifiability). Given noisy, finite, partial measurements, a parameter 8; is practically

identifiable if its posterior (or sampling distribution of estimators) is sufficiently concentrated.

We perform structural screening (symbolic Lie-derivative rank tests on reduced ODEs) and enforce practical

identifiability by reweighting losses with sensitivity-based schedules and sparse priors.

IV. PB-HNO ARCHITECTURE

PB-HNO couples an FNO for with a Neural ODE for via differentiable boundary and averaging operators.



A. Fourier Neural Operator (PDE block)
Let G4 denote an FNO parameterized by ¢ mapping ligand fields forward one step:

Lijar = g¢(Lt7 {bi(s (1))} ey St), (4)

where b; encodes boundary consumption ® in a differentiable channel.

B. Neural ODE (reaction block)
Intracellular updates use an explicit Neural ODE solver parameterized by ):
t+At
xi(t + At) = z;(t) + / fo(zi(7),4;(7),0)dT ~ ODESolve(fy,z;(t), ;). (5)
t

We implement adaptive-step Runge-Kutta with adjoint sensitivities for memory efficiency.

C. Coupling and latent state

Averaging operator 4; maps L to ¢;; a boundary operator B; maps (L, x;) to membrane flux. Both are implemented

as convolutional stencils aligned to I'; masks and trained jointly, but regularized toward biophysical forms:
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D. Training objective
Given observations y of selected species and states at times {¢x}, the composite loss is
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where z; = (L¢, {z;(t)}), h is the measurement operator, R residuals enforce physics, and (u, X) are prior mean/co-
variance for 6. The sensitivity term reweights samples by local Fisher information to boost practically identifiable

directions.



E. Algorithms

Algorithm 1 PB-HNO training with identifiability-aware weighting

1: Initialize ¢, ), 0; set A weights; build masks I';

2: for epoch =1,...,F do

3: for minibatch of trajectories do

4 Rollout L; via FNO; compute ¢;(t); integrate Neural ODE for z;(t)
5 Compute residuals, priors, and measurement loss

6 Estimate local sensitivities Oh/d6; update Wsens

7: Backpropagate Vg 4 oL and update parameters
8

9:

end for
end for

Algorithm 2 Differentiable MPC for intervention synthesis

: Given learned dynamics, target x*, horizon T', constraints U
: Initialize control sequence ug.7_1
: for iters =1,...,K do
Predict rollout under ug.7—1 using PB-HNO
Compute cost J = EtT:_Ol ze — 2[5 + lluell%
Update ug.r—1 < ug.7—1 — nVyJ projected onto U
end for
: Return ug.7_1

V. EXPERIMENTS

We evaluate PB-HNO on three canonical pathways and report parameter recovery, forecasting, counterfactuals, and

control.

A. Datasets

Notch (juxtacrine). Two-cell and mosaic lattices with ligand-receptor binding, NICD production and HES
repression. Ligand diffusion in extracellular space couples cells at membranes.

Wnt (morphogen). Diffusive ligand with degradation and receptor internalization; includes source domains and
spatial gradients.

MAPK (cascade). Intracellular phosphorylation with feedback; no PDE, used to test ODE-only performance and
ablations.

Synthetic datasets sample parameters from biologically plausible priors. Observations are partial (selected species)

with additive Gaussian noise and irregular sampling.

B. Baselines

e« SBINN: Systems-biology PINN with ODE residuals only.



« PINN-ODE/PDE: Single-scale PINNs applied separately to ODE or PDE components.
o FNO (no physics): Pure operator learner trained on input/output pairs.

o Hybrid (no control): Our model without MPC layer.

C. Training details and metrics

We use Adam with cosine decay; early stopping on validation loss; gradient clipping for stability. Metrics: parameter
MAE/MAPE, state RMSE, counterfactual error under unseen inputs, and control success rate (fraction reaching target

tolerance).

D. Quantitative results

Figure [1] shows parameter MAE vs. noise. PB-HNO dominates across regimes and maintains graceful degradation.
Table [l summarizes Notch parameter recovery under sparse sampling; PB-HNO reduces MAE and variance. Counter-
factual prediction improves over baselines, especially for Wnt gradients where PDE coupling matters. Control synthesis

attains target windows with low intervention energy.
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FIG. 1: Parameter error vs. observation noise. Log-scaled y for readability.

TABLE I: Notch parameter recovery under sparse sampling (n = 12 timepoints, 20% noise). Values are mean (std)
over 10 seeds.

Method MAE | MAPE (%) ] Var ]

PB-HNO 0.042 (0.008) 7.9 (1.3)  0.0012
SBINN  0.072 (0.021) 14.8 (4.1) 0.0049
FNO  0.098 (0.030) 19.3 (5.8) 0.0075




E. Qualitative analysis

Figure [2] sketches PB-HNO: an FNO block advances L, boundary operators produce membrane fluxes, and Neural
ODEs update x;. Figure [3] visualizes Wnt gradients learned from sparse edge measurements; the hybrid model

reconstructs interior fields.

FIG. 2: PB-HNO schematic. PDE and ODE blocks are coupled through differentiable boundary and averaging
operators.
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FIG. 3: Learned Wnt morphogen field from sparse boundary observations.

VI. DISCUSSION

a. Why multi-scale helps. Ligand transport mediates nonlocal coupling; ignoring PDEs forces ODE models to
absorb spatial effects, harming identifiability. PB-HNO factors spatial and intracellular mechanisms cleanly, improving
sample efficiency.

b. Robustness to sparsity and noise. Operator learning amortizes inference over function spaces, and physics
residuals regularize ill-posed directions. Sensitivity-weighted losses improve practical identifiability compared with
uniform MSE training.

c. Predictive control. The differentiable MPC layer converts descriptive models into prescriptive tools. In vitro,
this could translate to ligand or inhibitor scheduling; in silico, it enables design-space exploration under constraints.

d. Limitations and risks. Neural operators can extrapolate poorly outside training distributions. Stiff dynamics
may require tailored solvers. Safety-critical translation demands uncertainty quantification and robust control; we

provide ensembles and posterior sampling as first steps.



VII. CONCLUSION

We presented PB-HNO, a hybrid neural operator for multi-scale biological dynamics, enabling parameter discovery,

state estimation, and predictive control. Experiments across three pathways show robust gains over baselines. Future

work will incorporate single-cell RNA-seq constraints, active experimental design, and causal identifiability guarantees.

Appendix A: Appendix A: Full ODE/PDE Specifications

1. Notch (two-cell)

States per cell: receptor R, ligand D, complex C, NICD N, transcriptional repressor H. Example dynamics:

Ri = QR — konRi‘gi + koﬁci - 6RR2'; (Al)
D; =ap(l+n/(1+ H")) — konDiR; + kogC; — 6pD;, (A2)
Ci = konRig’L' - (koﬁ' + SC)CZ? (AS)
N; = anCi — 6n N;, (A4)

with ¢; = A;[L] and PDE (1))

2. Wnt (morphogen)

oL = DV?L — \L — Z rplp, ®(L, x;) + S, (A6)

&; = f(x,4;;0)  (e.g., receptor internalization, S-catenin activation). (A7)
3. MAPK (cascade)
X =kU®1-X) - kX, (A8)

Y =ksX(1-Y) — kY, (A9)

Z=ksY(1—2)—keZ. (A10)



Appendix B: Appendix B: Identifiability Diagnostics

We estimate empirical Fisher information F(6) =", J,/ b L Jx with Ji = Oh(z,)/00. Columns with low norms
trigger increased measurement residual weights at informative times. We also apply ridge priors and log-transforms to

constrain positive parameters.

Appendix C: Appendix C: Training Hyperparameters

TABLE II: Default hyperparameters.

Setting Value

FNO layers 4 spectral convs, 32 modes
Neural ODE  3-layer MLP (128, ReLU)

Optimizer Adam (1073) with cosine decay
Batch size 8 trajectories

Physics weights Appg = 1, Aopg =1

Prior p = bio prior, ¥ = diag(0.5%)
Control Q = diag(1), R=10"21, T =20

Appendix D: Appendix D: Adjoint Gradients

We use continuous adjoints for Neural ODEs and discrete backprop through FNO layers. The total gradient obeys

dr  (af\" oL\ oL [ cof

[1] Raissi, M., Perdikaris, P., Karniadakis, G.E. (2019). Physics-informed neural networks. J. Comput. Phys.
[2] Yu, T. et al. (2021). Systems-biology informed deep learning. PLoS Comput. Biol.

[3] Li, Z. et al. (2021). Fourier Neural Operator for parametric PDEs. ICLR.

[4] Lu, L. et al. (2021). Learning operators via DeepONet. Nat. Mach. Intell.

[5] Rawlings, J., Mayne, D. (2017). Model Predictive Control: Theory and Design.

[6] Chen, R.T.Q. et al. (2018). Neural Ordinary Differential Equations. NeurIPS.

[7] Turing, A.M. (1952). The chemical basis of morphogenesis. Phil. Trans. R. Soc. B.

[8] Gillespie, D. (1977). Exact stochastic simulation. J. Phys. Chem.

[9] Pathak, J. et al. (2022). FourCastNet. arXiv.

10] Poli, M. et al. (2020). Physics-informed Neural ODEs. ICLR Workshop.

[
[11] Kovachki, N. et al. (2023). Neural Operator: A survey. arXiv.
[12] Amos, B., Kolter, J.Z. (2017). OptNet. ICML.

[

13] Pontryagin, L.S. (1962). The Mathematical Theory of Optimal Processes.



[14] Bellu, G. et al. (2007). DAISY: structural identifiability analysis. Bioinformatics.

10



	Multi-Scale Physics–Biology Hybrid Neural Operators for Parameter Discovery and Predictive Control in Cellular Signaling Pathways
	Abstract
	Introduction
	Related Work
	Multi-Scale Modeling: ODE–PDE Coupling
	Spatial transport with membrane coupling
	Intracellular reaction kinetics
	Identifiability notions

	PB-HNO Architecture
	Fourier Neural Operator (PDE block)
	Neural ODE (reaction block)
	Coupling and latent state
	Training objective
	Algorithms

	Experiments
	Datasets
	Baselines
	Training details and metrics
	Quantitative results
	Qualitative analysis

	Discussion
	Conclusion
	Appendix A: Full ODE/PDE Specifications
	Notch (two-cell)
	Wnt (morphogen)
	MAPK (cascade)

	Appendix B: Identifiability Diagnostics
	Appendix C: Training Hyperparameters
	Appendix D: Adjoint Gradients
	References


