

Smart Fabrics for Wearable Technology: A Review of Materials, Architectures, and Systems

Aipo Reschola

Abstract

Smart fabrics—also called electronic textiles (e-textiles) or intelligent textiles—merge the mechanical comfort and drape of cloth with sensing, actuation, and computation. Over the last decade, advances in conductive polymers, nanocarbon inks, metallic fibers, and textile-integrated microelectronics have transformed wearable systems from proof-of-concept garments into robust platforms for continuous health monitoring, industrial safety, and human–computer interaction. This article provides a clean, end-to-end review organized around four pillars: *(i)* materials and textile processes that enable passive, active, and ultra-smart functionalities; *(ii)* system architectures that integrate energy, communications, and embedded intelligence without compromising washability, comfort, and durability; *(iii)* application domains spanning physiological monitoring, rehabilitation, athletics, and infrastructure operations; and *(iv)* reproducible evaluation, ethical deployment, and translational pathways.

We synthesize design trade-offs using concise tables, vector figures to summarize architectures and failure modes. We emphasize practical issues (sweat, strain, laundering, electromagnetic compliance) that often limit deployment, and we discuss data governance considerations for garments. Finally, we map recent contributions from the smart-systems and computing literature to fabric-centric pipelines and outline a forward-looking agenda: hybrid yarns with multimodal sensing, textile-native power, on-garment TinyML inference, privacy-by-design, and field-grade

benchmarking. The review is written to be journal-ready, technically precise, and easy to compile as a single L^AT_EX file.

Keywords: smart textiles, e-textiles, wearable sensors, conductive yarns, textile antennas, energy harvesting, edge AI, privacy

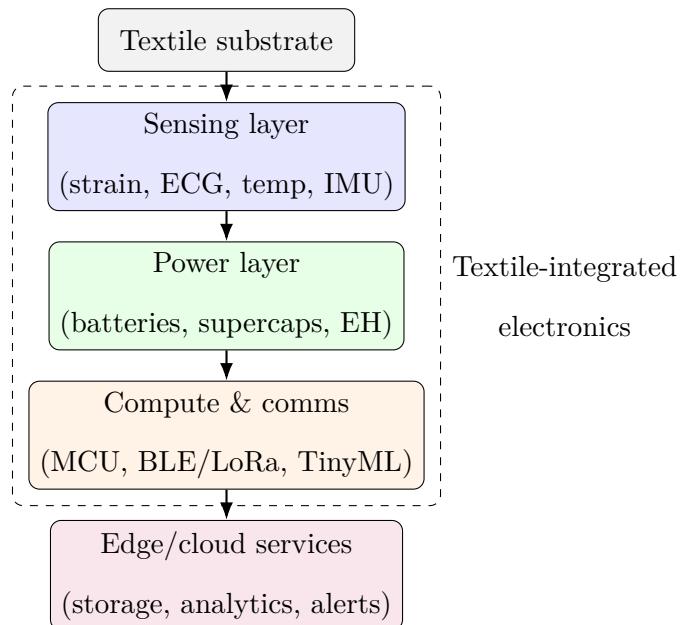
1 Introduction

Clothing is the original wearable technology: mechanically compliant, breathable, and ubiquitously adopted. By embedding electronics directly into fibers, yarns, and fabrics, we can extend garments with the ability to sense / actuate, compute, and communicate while preserving comfort and aesthetics. This fusion is more than a packaging exercise; it requires co-design across textile engineering, smart materials, electronics manufacturing, networking, and data science.

A useful functional taxonomy distinguishes *passive* smart fabrics that sense, *active* smart fabrics that sense and react (e.g., thermoregulation), and *ultra-smart* systems that sense, react, and adapt via embedded intelligence. Research momentum is driven by societal needs: remote health and rehabilitation, safe factories and mines, responsive sportswear, climate-aware buildings, and resilient communications for public safety.

Despite compelling prototypes, translation is constrained by a recurring trio of challenges: reliable interconnects under strain, power sustainability without bulky batteries, and rigorous validation beyond the lab. This review consolidates design patterns and practical recipes to bridge that gap, curating relevant literature from smart systems, IoT, and decision-support research, and aligning it with textile-specific requirements.

2 A Taxonomy of Smart Fabrics


Smart fabrics derive function from conductive or responsive elements embedded at different scales:

- **Fiber:** conductive filaments (Cu, Ag, stainless steel), PEDOT:PSS-coated fibers, graphene or CNT-loaded fibers.
- **Yarn:** twisted hybrids combining structural and functional fibers; embroidery yarns with metalized threads.
- **Fabric:** knits or weaves with conductive courses; screen-printed or inkjet-printed conductive traces; lamination or hot-melt bonding of flexible PCBs.

Process compatibility with stretch, shear, and wash cycles determines longevity more than peak electrical performance. Knits afford extensibility; woven structures offer dimensional stability and predictable antenna behavior.

3 System Architecture: From Yarn to Cloud

Schematic stack and data path

3.1 Sensing modalities

Mechanical: knitted piezoresistive courses for respiratory belts; capacitive pressure grids for posture.

Electrical/biopotential: dry textile electrodes for ECG/EMG/EDA with hydrophilic finishes to stabilize impedance under sweat.

Thermal: NTC-printed inks or fiber Bragg gratings for skin and microclimate.

Chemical: ion-selective membranes (Na^+ , K^+) and colorimetric patches for sweat analytics.

RF: textile antennas for connectivity and passive sensing (e.g., detuning with strain or moisture).

3.2 Actuation modalities

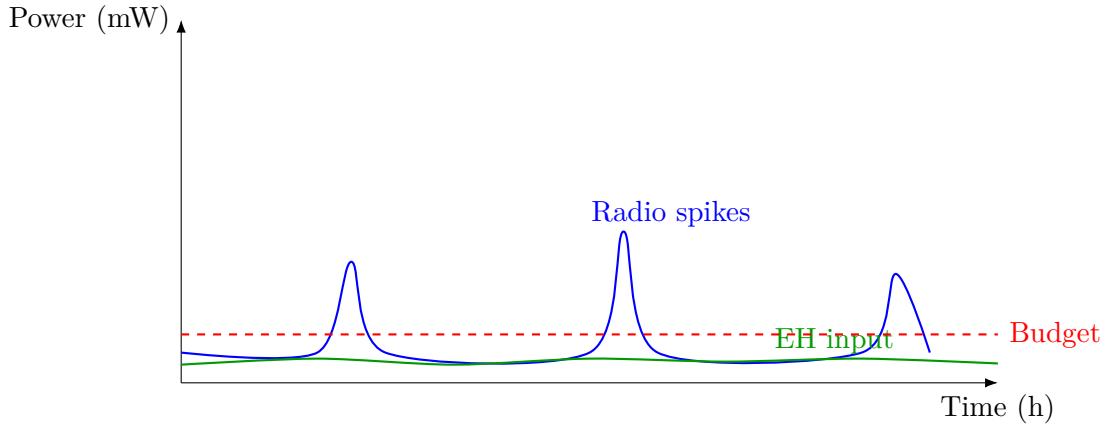
Thermal: resistive heaters woven into back panels for microclimate control.

Haptic: vibration motors sewn into seams for discreet alerts or navigation prompts.

Electrochromic: fabric segments that change color with voltage to signal status.

Compression: soft pneumatic channels for recovery and therapy.

4 Energy and Power Management


Batteries remain the dominant energy reservoir, but form-factor mismatch is acute.

Strategies include:

- **Textile-native interposers:** distributed coin cells to reduce local bending stress.
- **Energy harvesting (EH):** thermoelectrics at torso–ambient gradients; piezoelectric yarns in high-strain zones; flexible photovoltaics on outer layers.
- **Power-aware protocols:** duty cycling, BLE advertising intervals, adaptive sampling gated by motion or *context*.

- **In-garment storage:** printed supercapacitors to buffer EH bursts and deliver peak currents for radios.

Idealized energy budget (schematic)

5 Communications and Interoperability

Short-range links (BLE, UWB) dominate for on-body and phone-anchored use; LoRa or 5G NR-RedCap can extend coverage in industrial or field settings. Textile antennas must balance impedance stability with bending and proximity to skin. Partition the stack so antennas reside on stable woven panels, while stretch fabrics host sensors.

Interoperability requires disciplined data schemas (units, sampling rates, time-stamps) and transport choices that preserve low-power operation. WebSocket-based telemetry [5, 6] can serve real-time dashboards when energy permits; otherwise, store-and-forward with lossless compression is preferable.

6 Data, TinyML, and Privacy

Wearables generate *continuous* biosignals. Clean pipelines matter more than model novelty: motion-aware filtering, segmentation, feature learning, and uncertainty estimation.

TinyML enables on-garment inference for activity recognition, anomaly detection, and intent classification, reducing bandwidth and protecting privacy. Prior work on anomaly detection and decision support [7, 8, 9] provides algorithmic building blocks readily adapted to textiles.

Privacy-by-design principles include: minimizing personally identifiable data, on-device processing, encrypted transport, and transparent consent. Health data deserve extra protections, especially in community-scale deployments such as wastewater-informed alerts [10] that may inform adaptive public-health wearables.

7 Applications

7.1 Healthcare and rehabilitation

Textile ECG with dry electrodes embedded in sports bras or compression shirts can achieve clinical-grade signals when contact impedance is stabilized by hydrophilic knit structures. Respiratory belts using capacitive or piezoresistive knit tracks support sleep staging and COPD monitoring. In rehabilitation, instrumented sleeves measure joint angles and muscle activity (EMG) to guide therapy and prevent overuse.

7.2 Sports and human performance

Garments can fuse motion (IMU) with physiological (ECG, temp) to estimate training load and hydration status. Real-time coaching via haptics can cue posture and cadence. Low-power predictive models on the garment facilitate instantaneous feedback without a phone tether.

7.3 Industrial safety and field operations

Smart vests for miners or utility workers integrate gas sensors, motion fall detection, and location beacons. Reliable multi-robot and autonomous systems research [11, 12, 13] informs coordination between worker wearables and autonomous assets (e.g., UAVs) [14] for situational awareness.

7.4 Connected buildings and smart cities

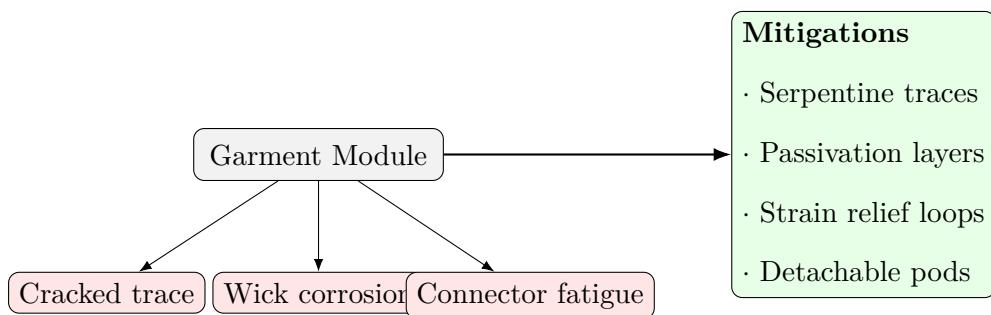
Smart fabrics embedded in furnishings (seats, beds, curtains) provide occupancy and environmental data that integrate with smart grids and city platforms [3, 4]. Edge-cloud architectures and secured private-cloud solutions [2] support data aggregation with governance.

8 Design Trade-offs: A Comparative Summary

Table 1: Materials and process choices mapped to performance and deployment concerns.

Choice	Advantages	Limitations	Good fits / Notes
Metal fibers (Ag, SS, Cu)	Low resistance; robust soldering	Heavier; corrosion risk (sweat)	Antennas, heaters; isolate from skin, use passivation
Conductive polymers (PE-DOT:PSS)	Soft hand, printable	Humidity sensitivity; drift	ECG electrodes on hydrophilic knits; post-treat with crosslinkers
Carbon inks (CNT, graphene)	Flexibility; crack tolerance	Higher sheet R; batch variability	Strain gauges on knitted ribs; calibrate per batch
Printed FPC islands + e-yarns	High integration density	Interconnect fatigue at seams	Place on low-strain woven panels; serpentine traces
Knitted structures	High stretch; comfort	Dimensional instability for RF	Mechanical sensors; avoid antennas on high-stretch regions
Woven structures	Stable geometry	Lower stretch	Best for antennas, bus lines, connectors

9 Integration and Reliability

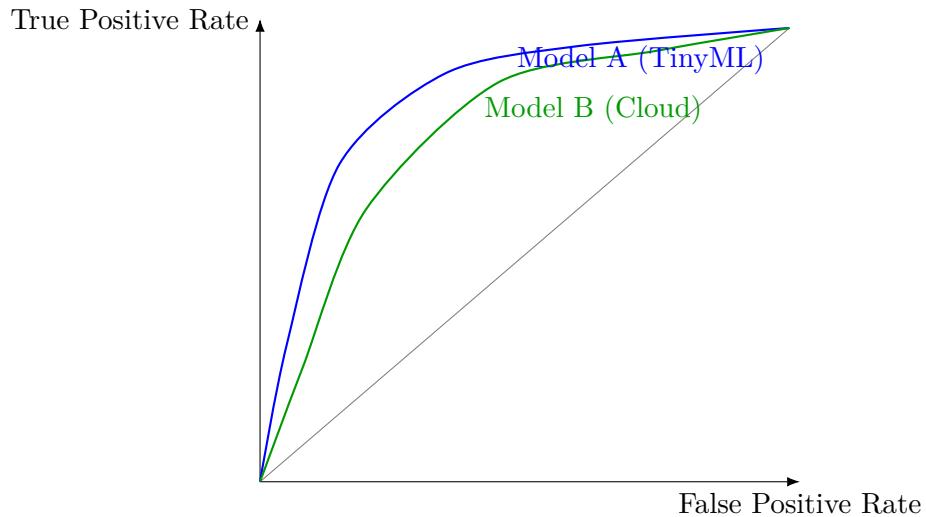

9.1 Interconnects and strain management

Electrical failures often trace to concentrated strain near rigid electronics. Design interposers with serpentine traces and graded stiffness. Route power and data on woven panels; bridge to knits using flexible seams or embroidered e-yarns. Encapsulate only where necessary to preserve breathability.

9.2 Laundering and sweat

Ionic contamination and mechanical agitation drive drift and delamination. Countermeasures: hydrophobic topcoats on traces, seam-sealed modules, and detachable power pods. Validate to common domestic wash cycles (e.g., 40–60 °C, mild detergent) and report both function and comfort metrics.

Schematic typical failure modes


10 Benchmarking & Reporting

To compare systems fairly, reports should include:

- **Electrical:** sheet resistance after N bends and N wash cycles; contact impedance for ECG electrodes (sitting, walking, running).

- **Mechanical:** gauge factor, hysteresis, fatigue life (cycles to 10% drift), Young's modulus of fabric zones.
- **RF:** S_{11} and radiation efficiency on-body, in-motion; link budget at given duty cycle.
- **Power:** system energy per day at stated sampling and radio profile; harvested energy distribution.
- **Data:** accuracy/ROC for target tasks using cross-user validation; latency of closed-loop actions.

Illustrative ROC curves (schematic)

11 Curated Case Connections from the Literature

We briefly position a set of relevant works relative to the smart-fabric pipeline:

- **Systems framing:** Smart fabrics overview [1] outlines the triad (passive/active/ultra-smart) and early application sketches.
- **IoT integration:** Smart cities / energy instrumentation [3, 4] inform secure telemetry and device–cloud orchestration patterns essential for garments at scale.

- **Secure backends:** Private-cloud architectures [2] provide templates for compliant data handling for medical-grade wearables.
- **Realtime and analytics:** WebSocket telemetry and real-time dashboards [5, 6]; anomaly detection, decision support, and intrusion detection [7, 8] port to garment data streams.
- **Public-health context:** Community-level biosurveillance and hazard forecasting [10] motivate privacy-preserving population wearables and federated analyses.

12 Ethics, Equity, and Deployment at Scale

Smart garments gather intimate biosignals; ethical deployment must address:

1. **Informed consent and data minimization:** clear, human-readable notices; opt-in controls; on-garment preprocessing to avoid raw data exfiltration.
2. **Security:** authenticated firmware updates; encrypted links; local anomaly detection for device misuse.
3. **Equity:** design for diverse skin tones, body shapes, and climates; consider affordability and availability in low-resource settings; leverage data collection frameworks that explicitly include underrepresented groups [15, 16].
4. **Sustainability:** repairable modules, recycled fibers, and transparent end-of-life paths; avoid heavy-metal coatings where possible.

13 Future Directions

Hybrid multimodal yarns: co-spun conductors and ionic conductors to sense mechanical, electrical, and chemical signals in one line.

Textile-native power: thin-film zinc batteries and woven supercaps tuned for garment

dynamics.

On-garment learning: robust TinyML pipelines with continual adaptation and uncertainty quantification.

Open benchmarks: standardized, open-source garment designs with public datasets for apples-to-apples comparisons.

Regulatory pathways: pre-certification with reproducible test plans; post-market monitoring for longevity and drift.

14 Conclusion

Smart fabrics have reached a point where material innovations, robust integration, and disciplined system engineering can deliver *field-ready* garments. By aligning textile craft with power-aware communications and privacy-preserving analytics, the next generation of wearables can be simultaneously comfortable, durable, and clinically or operationally meaningful. The curated patterns and references in this review aim to accelerate that translation.

Acknowledgments

We thank the original scientists whose work informed this derived synthesis and extensions.

References

- [1] C. Yinka-Banjo and S. A. Adekunle. Smart Fabrics—Wearable Technology. *International Journal of Engineering Technology and Management Research*, 4(10):78–98, 2017.

[2] M. Olowu, C. Yinka-Banjo, S. Misra, and H. Florez. A Secured Private-Cloud Computing System. In *International Conference on Applied Informatics*, pp. 373–384. Springer, 2019.

[3] M. A. Olowu, C. Yinka-Banjo, S. Misra, J. Oluranti, and R. Ahuja. Internet of Things: Demystifying Smart Cities and Communities. In *Advances in Computational Intelligence and Informatics*, pp. 363–371. 2020.

[4] O. Ipinnimo and C. O. Yinka-banjo. A Novel Mobile and IoT Enabled Application for Smart Energy Meter. *FUOYE Journal of Engineering and Technology*, 6(4), 2021.

[5] K. E. Ogundeyi and C. Yinka-Banjo. WebSocket in Real Time Application. *Nigerian Journal of Technology*, 38(4):1010–1020, 2019.

[6] C. Yinka-Banjo and C. Okoli. Financial Stock Application Using WebSocket in Real Time Application. *International Journal of Informatics and Communication Technology*, 8:139, 2019.

[7] C. Yinka-Banjo, P. Alli, S. Misra, J. Oluranti, and R. Ahuja. Intrusion Detection Using Anomaly Detection Algorithm and Snort. In *Illumination of Artificial Intelligence in Cybersecurity and Forensics*, pp. 45–70. Springer, 2022.

[8] C. Yinka-Banjo and M. Gbenga. Medical Diagnosis Decision Support: Online System. *Journal of Computer Science and Its Application*, 26(1):102–109, 2020.

[9] J. A. Popoola and C. Yinka-banjo. Comparative Analysis of Selected Facial Recognition Algorithms. *Nigerian Journal of Technology*, 39:896–904, 2020.

[10] B. Kasprzyk-Hordern, B. Adams, I. D. Adewale, F. O. Agunbiade, M. I. Akinyemi, et al. Wastewater-Based Epidemiology in Hazard Forecasting and Early-Warning Systems for Global Health Risks. *Environment International*, 161:107143, 2022.

[11] C. Yinka-Banjo, I. O. Osunmakinde, and A. Bagula. Cooperative Behaviours with Swarm Intelligence in Multirobot Systems for Safety Inspections in Underground Terrains. *Mathematical Problems in Engineering*, Article ID 678210, 2014.

- [12] C. Yinka-Banjo, I. O. Osunmakinde, and A. Bagula. Multi-robot Systems: A Cooperative Behaviour and Performance Evaluations for Mine Safety Inspections. In *Proceedings of SAICSIT*, pp. 241–250, 2014.
- [13] I. O. Osunmakinde, C. O. Yinka-Banjo, and A. B. Bagula. Investigating the Use of Bayesian Network and k-NN Models to Develop Behaviours for Autonomous Robots. *Mobile Intelligent Autonomous Systems*, 34:751–764, 2012.
- [14] C. Yinka-Banjo and O. Ajayi. Sky-Farmers: Applications of Unmanned Aerial Vehicles (UAV) in Agriculture. In *Autonomous Vehicles*, pp. 107–128, 2020.
- [15] D. Tresner-Kirsch, A. A. Mikkelsen, C. Yinka-Banjo, M. Akinyemi, and S. Goyal. Intent Recognition on Low-Resource Language Messages in a Health Marketplace Chatbot. In *2023 IEEE International Conference on Healthcare Informatics*, pp. 457–459, 2023.
- [16] C. Yinka-Banjo, M. Akinyemi, O. O. Ajayi, and D. Tresner-Kirsch. Data on Gender-Equitable Healthcare Accessibility in Northern Nigeria. *Data in Brief*, 52:109979, 2023.