Sparse Autoencoders for Interpretable Feature
Extraction in Actor—Critic Reinforcement

Learning Models

Chari Mackson

Summer PREMIERE Research Academy

Abstract

Interpretability remains a critical challenge in deep reinforcement learning (RL),
where neural policies learn complex representations that are often opaque to human
understanding. While sparse autoencoders (SAEs) have been proposed as a tool for
feature disentanglement and concept extraction in value-based RL, little is known about
their role in actor—critic architectures that maintain separate policy and value networks.
In this work, we propose a framework for embedding SAEs into the feature space of both
branches of an Advantage Actor—Critic (A2C) model, enabling systematic comparison
of learned concepts across policy and value representations. We introduce a mixed-k
sparsity schedule that alternates between strict sparsity and relaxed sparsity during
training, improving the capture of both rare and moderately common features. Our
experiments on the LunarLander-v2 environment demonstrate that this approach yields
interpretable, stable features that correlate with high-level action semantics and game
states. We evaluate interpretability using feature stability across seeds, feature—action
correlation, and human-label alignment. Our results suggest that the policy network
tends to learn more temporally predictive features, while the value network encodes

broader contextual features, both of which can be surfaced through SAE-driven analysis.

1 Introduction

Deep reinforcement learning has achieved remarkable successes in complex control domains,
from Atari games to continuous robotics control (Mnih et al., 2015; ?; 7). Yet, the internal
representations learned by deep RL agents remain largely inaccessible to human interpre-
tation, limiting trust and debuggability in safety-critical applications. Recent work has
explored sparse autoencoders (SAEs) as a means of uncovering interpretable, disentangled
features from hidden activations of deep value networks (Olah et al., 2020; Bricken et al.
2023). These methods have shown promise in extracting “concept neurons” that respond to
semantically meaningful patterns in the agent’s observations.

However, most existing SAE interpretability work has focused on value-based methods
such as Deep Q-Networks (DQN) (Mnih et al. 2015)), which employ a single network to
approximate the state—action value function. In contrast, actor—critic methods maintain two
distinct function approximators: a policy network (actor) that outputs an action distribution,
and a value network (critic) that estimates the state value function. This separation raises
new questions: Do the actor and critic learn qualitatively different feature spaces? Which
branch contains features more aligned with human-interpretable concepts?

In this paper, we address these questions by applying SAEs to both branches of an Ad-
vantage Actor—Critic (A2C) model trained on the LunarLander-v2 task. We introduce a
mixed-k sparsity training schedule for the SAEs, designed to balance between discovering
rare, sharp features and capturing moderately common patterns that may also be seman-
tically meaningful. We develop quantitative metrics for interpretability, including feature
stability over training seeds and correlation with high-level action statistics.

Our contributions are:

1. A novel application of sparse autoencoders to both policy and value networks in an

actor—critic setting, enabling branch-wise interpretability analysis.

2. The mixed-k sparsity schedule, which improves the diversity and semantic clarity of

learned SAE features.

3. A set of interpretability metrics tailored to RL, measuring stability, action correlation,

and human-label alignment.

4. Empirical findings on LunarLander-v2 showing distinct interpretability profiles for

policy and value branches.

2 Related Work

2.1 Interpretability in Deep Reinforcement Learning

Interpretability in RL spans several approaches, from saliency mapping (Greydanus et al.
2018) to policy summarization (Amir and Amir, 2018) and symbolic rule extraction (Verma
et all |2018). While these methods focus on attributing decisions to input features, SAE-
based approaches instead seek to uncover internal concept representations by training aux-

iliary models on hidden activations.

2.2 Sparse Autoencoders for Concept Discovery

Sparse autoencoders have been explored in interpretability research as a tool for finding
monosemantic neurons—hidden units that respond consistently to a single concept (Olah
et al., 2020 |Bricken et all [2023)). The SAE enforces sparsity in its latent space, often
through an L, penalty or fixed-k top activation constraint. Our work extends this approach

to actor—critic models and introduces a mixed-k schedule for improved concept diversity.

2.3 Actor—Critic Architectures

Actor—critic methods combine policy gradient updates for the actor with value-based updates
for the critic (Konda and Tsitsiklis, |2000)). The separation of networks creates two different

representational spaces, which we hypothesize may differ in interpretability potential. Our

work is the first, to our knowledge, to explicitly compare SAE-derived features between actor

and critic.

3 Methods

3.1 Advantage Actor—Critic Framework

We consider the standard RL setup with an agent interacting with an environment modeled
as a Markov Decision Process (S, A, P,r,7). In A2C, the policy network my(a|s) is updated

using the advantage estimate:

A =R, — V¢(St)7 (1)
where Vy(s) is the value network.
The policy loss is:
£p01i0y = —E; [log 7T9<at’3t)At]) (2)
and the value loss is:
1
Evalue = §Et [(Rt - vqb(st))ﬂ . (3)

3.2 Sparse Autoencoder Integration

Let hf and h{ denote hidden activations from the penultimate layers of the actor and critic
networks, respectively. We train separate SAEs fi and f on batches of these activations.

The SAE encodes h into a sparse latent vector z and reconstructs h:

z = TopK(W.h + b, k), h =Wz + by, (4)

with reconstruction loss:

Lsar = ||h — il”% (5)

3.3 Mixed-k Sparsity Schedule

Unlike fixed-k approaches, our mixed-k schedule alternates between small k, and larger k;
during training epochs:

ks if epoch mod 2 = 0,
kepoch = (6)

k; otherwise.

This alternation promotes discovery of both rare and moderately common features.

3.4 Interpretability Metrics
We propose:
e Feature Stability (FS): Mean Jaccard index of top activations across seeds.

e Action Correlation (AC): Maximum Pearson correlation between feature activation

and action selection probability.

e Human Label Alignment (HLA): Agreement between human-assigned feature la-

bels and activation-triggered states.

Algorithm 1 SAE Integration with A2C

Initialize actor 7y, critic Vi, SAEs f# | fi
for each episode do

Collect trajectory 7 using 7y

Update 7y, V4 via A2C losses

Extract h{, h{ from minibatch

Train fj , f;. using Lsag with mixed-k schedule
end for

4 Experiments

4.1 Environment

We use the LunarLander-v2 environment from OpenAl Gym (Brockman et al., [2016)), which

presents a continuous state space and discrete actions.

4.2 Baselines
We compare:
e No SAE: Standard A2C.
e Fixed-k SAE: SAE with constant k.

e Mixed-k SAE (ours).

4.3 Training Details

We train with Adam optimizer, learning rate 3 x 107%, v = 0.99, and entropy regularization

0.01. SAEs are 2-layer MLPs with latent size 512.

4.4 Results

4.4.1 Quantitative Evaluation

Table [1] reports Feature Stability (FS), Action Correlation (AC), and Human Label Align-

ment (HLA) for all methods across five training seeds.

Table 1: Interpretability metrics averaged over five seeds. Higher is better.

Method FS AC HLA
No SAE - 0.21 -
Fixed-k SAE 0.62 0.34 0.55

Mixed-k SAE (ours) 0.74 0.42 0.68

4.4.2 Feature Activation Distributions

Figure [I] shows the distribution of activation frequencies for features in the actor and critic
SAEs. The actor’s SAE exhibits a wider spread with more moderately active features, while

the critic’s SAE shows a bimodal pattern with many highly sparse features.

n 00 Actor SAE
200 00 Critic SAE | |

Feature Count

0 | :

0 5 10 15 20 25 30 35 40
Activation Frequency (%)

Figure 1: Distribution of activation frequencies for actor and critic SAE features (aggregated
over seeds).

4.4.3 Qualitative Examples

Manual inspection of highly activated features revealed distinct semantic roles:

e Actor Feature #42 consistently activated during final descent maneuvers when the

lander was aligned with the pad.

e Critic Feature #87 activated in early descent phases with high horizontal drift, sug-

gesting a role in assessing future stability rather than immediate action.

5 Discussion

Our expanded analysis reveals several key insights:

Branch-specific feature semantics. Actor SAE features tend to represent temporally
local, action-driving states (e.g., “burn thrusters to stabilize”), while critic SAE features
represent aggregated situational context (e.g., “risk of crash given velocity”). This aligns
with the actor’s need to optimize short-horizon action distributions and the critic’s role in

value estimation.

Impact of mixed-k schedule. The mixed-k regime yields both rare, sharp features and
moderately common context features, increasing interpretability diversity. This suggests

that enforcing a single sparsity level may miss important mid-frequency patterns.

Implications for RL interpretability. These findings imply that interpretability eval-
uations should consider branch-specific roles in multi-network architectures, and that SAE

hyperparameters may need to be tuned differently for actors and critics.

Limitations. Our experiments are limited to a single discrete-action environment. Ad-
ditionally, human label alignment was based on a small group of annotators, potentially

limiting generality.

6 Conclusion

We have presented a systematic study of sparse autoencoders in actor—critic architectures,
introducing a mixed-k sparsity schedule that improves feature diversity and interpretability.

Our analysis showed:
e Distinct interpretability profiles emerge for actor and critic networks.
e Mixed-k training improves stability and action correlation over fixed-k baselines.

e Qualitative inspection reveals semantically meaningful features tied to high-level game-

play concepts.

Future work will extend to continuous control, multi-agent settings, and SAE integration

into training loops for real-time interpretability feedback.

References

Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness, J., Bellemare, M. G., Graves,
A., Riedmiller, M., Fidjeland, A. K., Ostrovski, G., Petersen, S., Beattie, C., Sadik, A.,
Antonoglou, 1., King, H., Kumaran, D., Wierstra, D., Legg, S., and Hassabis, D. (2015).

Human-level control through deep reinforcement learning. Nature, 518(7540):529-533.

Bricken, T., Templeton, A., et al. (2023). Towards monosemanticity: Decomposing language

models with dictionary learning. Transformer Circuits Thread.

Olah, C., et al. (2020). Zoom in: An introduction to circuits. Distill. https://distill.

pub/2020/circuits/zoom-1in/\

Greydanus, S., Koul, A., Dodge, J., and Fern, A. (2018). Visualizing and understanding

atari agents. In International Conference on Machine Learning, pages 1792-1801.

Amir, D. and Amir, O. (2018). Highlights: Summarizing agent behavior to people. In
Proceedings of the 17th International Conference on Autonomous Agents and MultiAgent

Systems, pages 1168-1176.

Verma, A., Murali, V., Singh, R., Kohli, P., and Chaudhuri, S. (2018). Programmatically
interpretable reinforcement learning. In International Conference on Machine Learning,

pages 5045-5054.

Konda, V. and Tsitsiklis, J. (2000). Actor-critic algorithms. In Advances in Neural Infor-

mation Processing Systems, pages 1008-1014.

Brockman, G., Cheung, V., Pettersson, L., Schneider, J., Schulman, J., Tang, J., and
Zaremba, W. (2016). OpenAl Gym. arXiv preprint arXiv:1606.01540.

9

https://distill.pub/2020/circuits/zoom-in/
https://distill.pub/2020/circuits/zoom-in/

	Introduction
	Related Work
	Interpretability in Deep Reinforcement Learning
	Sparse Autoencoders for Concept Discovery
	Actor–Critic Architectures

	Methods
	Advantage Actor–Critic Framework
	Sparse Autoencoder Integration
	Mixed-k Sparsity Schedule
	Interpretability Metrics

	Experiments
	Environment
	Baselines
	Training Details
	Results
	Quantitative Evaluation
	Feature Activation Distributions
	Qualitative Examples

	Discussion
	Conclusion

