

Review of Neural and Immune Responses to Virtual Infection Threats: Integrating Peripersonal Space Processing and Innate Lymphoid Cell Activation

Lester Ragowich

Abstract

Recent research has uncovered novel neuro-immune mechanisms by which the human brain anticipates infection threats via peripersonal space (PPS) neural networks, leading to the activation of innate lymphoid cells (ILCs). Using a multi-modal approach—combining virtual reality (VR), electrophysiology, neuroimaging, immunophenotyping, and computational modeling—this study demonstrates that virtual avatars simulating infection threat trigger distinct neural and immune responses resembling actual pathogen exposure. This critical review evaluates the study’s methodology, findings, and interpretations in the context of contemporary neuroimmunology and behavioral immune system theories. While the work innovatively bridges neural sensory-motor processing and innate immunity, limitations include potential confounding factors, ecological validity concerns, and sample size constraints. We discuss the broader implications for understanding neuro-immune cross-talk and propose future directions for research in infection anticipation and psychoneuroimmunology.

Keywords: Neuroimmunology, Peripersonal space, Innate lymphoid cells, Virtual reality, Infection anticipation, HPA axis, Psychoneuroimmunology

1 Introduction

The nervous and immune systems are intricately interconnected, enabling organisms to detect and respond to environmental threats rapidly. While classical threat detection often emphasizes predator avoidance and fight-or-flight responses, emerging evidence suggests the brain can also anticipate infection threats before pathogen exposure, potentially priming the immune system (Dantzer et al., 2008; Schaller and Park, 2011). The peripersonal space (PPS)—the immediate vicinity surrounding the body—has been implicated in multisensory threat processing and defensive behavior (Graziano and Cooke, 2006). However, its role in immunological anticipation remains largely unexplored.

Behavioral immune system frameworks posit that humans employ sensory cues to avoid potential infection sources, modulating social and avoidance behaviors accordingly (Schaller and Park, 2011). Translating this concept into neural and immune mechanisms, the reviewed study investigates whether virtual infection cues activate PPS networks and induce innate immune responses via innate lymphoid cells (ILCs)—key effectors of early immune defense (Artis and Spits, 2015).

By integrating virtual reality (VR) paradigms with neurophysiological recordings, functional magnetic resonance imaging (fMRI), peripheral immune profiling, and computational modeling, the study proposes a nonlinear neuro-immune cross-talk mediated by hypothalamic–pituitary–adrenal (HPA) axis hormones, eicosanoids, and neuroinflammation. This review critically assesses the study’s design, results, and broader implications within the growing field of psychoneuroimmunology.

2 Study Summary

2.1 Experimental Design

Participants were exposed to avatars categorized as neutral, infectious, or fearful within a VR environment while undergoing a tactile multisensory PPS task. Neural activity was recorded using electroencephalography (EEG) and subsequently localized with source

analysis. Functional MRI assessed brain regions and networks involved in processing these virtual threats. Peripheral blood samples collected before and after VR exposure quantified ILC subset frequencies and activation states through flow cytometry. A separate cohort vaccinated against influenza served as a real pathogen control.

2.2 Key Findings

- EEG and fMRI data showed selective activation of parietal and premotor PPS regions during exposure to infectious avatars, including anticipatory responses at greater distances.
- Immunophenotyping revealed significant modulation of ILC subsets in the infection cohort—decreased ILC1 and increased ILC2 and ILCP frequencies—paralleling responses observed in vaccinated participants.
- Neural network modeling integrated HPA axis hormones, eicosanoids, and neuroinflammatory factors to predict ILC activation, identifying a “hot spot” of combined signals that facilitated immune priming.
- Control experiments with fearful avatars and networks lacking one input variable failed to reproduce the immune activation pattern, indicating specificity.

3 Critical Analysis

3.1 Hypothesis and Theoretical Rationale

The hypothesis that PPS processing of infection-related cues primes innate immunity extends existing knowledge about threat detection by linking sensory-motor processing to immune function. It builds on animal studies demonstrating anticipatory immune responses to pathogen-associated signals (Besedovsky et al., 1996) and human studies linking psychological stress with immune modulation (Segerstrom and Miller, 2004).

Nonetheless, the assumption that VR avatars fully recapitulate real infection cues raises questions. Real pathogens evoke multisensory, dynamic stimuli including olfactory,

tactile, and social cues not easily simulated in VR, which could influence both neural and immune responses (Sterzer et al., 2010). Future work should aim to incorporate richer sensory environments.

3.2 Methodological Strengths

- **Multimodal Approach:** Combining VR, EEG, fMRI, immunophenotyping, and computational modeling offers comprehensive insight, addressing limitations inherent to single-method studies.
- **Control Cohorts:** Inclusion of fearful avatars and vaccinated participants strengthens claims regarding specificity of neural-immune activation.
- **Computational Modeling:** Neural network approaches capture nonlinear, multidimensional interactions between neuroendocrine and immune factors, advancing beyond traditional linear correlation analyses.

3.3 Methodological Limitations

- **Sample Size and Power:** Cohorts of approximately 15 participants limit statistical power, increasing risk of Type II error and reducing generalizability.
- **Peripheral Sampling:** Blood-based ILC measurements may not fully reflect tissue-resident immune responses critical for pathogen defense (Monticelli et al., 2011).
- **Potential Confounds:** VR-induced stress or arousal could drive immune changes; although fearful avatars serve as a control, physiological stress markers (e.g., cortisol) should be more thoroughly monitored.
- **Temporal Resolution:** Immune measurements post-VR capture only immediate responses; longer follow-up could elucidate sustained or adaptive immunity changes.

3.4 Data Interpretation

Localization of EEG signals to canonical PPS regions is consistent with prior literature (Brozzoli et al., 2014). fMRI connectivity implicates the salience network and hypothalamus, underscoring a plausible neuroendocrine axis for immune modulation. The absence of significant NK cell changes, but modulation of ILC subsets, highlights immune specificity.

Computational modeling explaining 71% variance in immune activation is impressive but should be interpreted cautiously due to model complexity and input simplifications. External validation on independent datasets is necessary.

4 Contextualizing Findings

This study complements prior psychoneuroimmunology research by moving beyond generalized stress-immune interactions to specific pathogen-related threat processing (Dantzer et al., 2008). It integrates behavioral immune theories with mechanistic neuroscience, supporting a model in which PPS and salience networks interface with the HPA axis and immune system for anticipatory defense.

It also parallels animal studies showing immune modulation by sensory cues (Kelley et al., 2003), providing a translational framework for human research. This approach could inform understanding of psychosocial factors in infection susceptibility and vaccine responses.

5 Limitations and Future Directions

To deepen understanding, future studies should:

- Incorporate multimodal VR stimuli (olfactory, tactile) and real-world social contexts.
- Expand sample sizes with diverse populations for greater generalizability.

- Employ longitudinal designs assessing durability and clinical relevance of immune priming.
- Use causal tools (e.g., transcranial magnetic stimulation, pharmacological manipulation) to dissect neural circuit roles.
- Explore molecular pathways linking HPA axis hormones, eicosanoids, and immune cell activation.

6 Conclusion

The reviewed study provides a pioneering investigation into how the human brain's representation of infection threat in peripersonal space modulates innate immune responses, bridging neural sensory-motor processing and immunity through complex neuroendocrine interactions. While methodological constraints temper interpretations, the findings lay a foundation for an integrated neuroimmune framework with implications for infection prevention and psychoneuroimmunology.

References

Dantzer, R., O'Connor, J.C., Freund, G.G., Johnson, R.W., and Kelley, K.W. (2008). From inflammation to sickness and depression: When the immune system subjugates the brain. *Nature Reviews Neuroscience*, 9(1), 46–56.

Schaller, M. and Park, J.H. (2011). The behavioral immune system (and why it matters). *Current Directions in Psychological Science*, 20(2), 99–103.

Graziano, M.S. and Cooke, D.F. (2006). Parieto-frontal interactions, personal space, and defensive behavior. *Neuropsychologia*, 44(13), 2621–2635.

Artis, D. and Spits, H. (2015). The biology of innate lymphoid cells. *Nature*, 517(7534), 293–301.

Besedovsky, H.O., del Rey, A., Sorkin, E., and Dinarello, C.A. (1996). Immunoregulatory feedback between cytokines and glucocorticoids. *Science*, 233(4767), 652–654.

Segerstrom, S.C. and Miller, G.E. (2004). Psychological stress and the human immune system: a meta-analytic study of 30 years of inquiry. *Psychological Bulletin*, 130(4), 601–630.

Sterzer, P., Kleinschmidt, A., and Rees, G. (2010). The neural bases of multistable perception. *Trends in Cognitive Sciences*, 13(7), 310–318.

Monticelli, L.A., Sonnenberg, G.F., Abt, M.C., Alenghat, T., Ziegler, C.G., Doering, T.A., et al. (2011). Innate lymphoid cells promote lung-tissue homeostasis after infection with influenza virus. *Nature Immunology*, 12(11), 1045–1054.

Brozzoli, C., Ehrsson, H.H., and Farnè, A. (2014). Multisensory representation of the space near the hand: From perception to action and interindividual interactions. *Neuroscience & Biobehavioral Reviews*, 37, 2529–2540.

Kelley, K.W., Bluthé, R.M., Dantzer, R., Zhou, J.H., Shen, W.H., Johnson, R.W., and Broussard, S.R. (2003). Cytokine-induced sickness behavior. *Brain, Behavior, and Immunity*, 17(1 Suppl), S112–S118.