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Abstract

Aging multifactorial process arising from interacting biological subsystems includ-

ing metabolism, proteostasis, genomic stability, immune surveillance, and intercellular

communication. While reductionist studies have uncovered individual molecular mech-

anisms of aging, a generalized systems biology framework is required to unify these

observations into a coherent predictive model. This paper develops a computational

framework that integrates multi-omics data with a coupled dynamical systems model

representing key aging hallmarks. Using synthetic but biologically plausible datasets,

we demonstrate how ordinary differential equations (ODEs) can be parameterized to

simulate biological age trajectories, quantify subsystem coupling, and predict interven-

tion outcomes. Our results highlight nonlinear interactions between metabolic decline,

proteostasis loss, genomic instability, and immune dysregulation, revealing that syner-

gistic deterioration accelerates aging beyond the sum of individual effects. This gener-

alized framework can accommodate diverse omics modalities and provides a foundation

for identifying system-wide biomarkers and designing multi-target anti-aging interven-

tions.
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1 Introduction

Aging is characterized by the progressive decline of physiological integrity, leading to im-

paired function and increased vulnerability to death [1]. Multiple hallmarks—including ge-

nomic instability, telomere attrition, epigenetic alterations, loss of proteostasis, deregulated

nutrient sensing, mitochondrial dysfunction, cellular senescence, stem cell exhaustion, and

altered intercellular communication—are implicated in this process.

Recent advances in high-throughput omics technologies have enabled the simultaneous

measurement of diverse molecular layers, including genomics, transcriptomics, proteomics,

metabolomics, and epigenomics. However, despite these data-rich resources, much of aging

research remains fragmented, with analyses focusing on single subsystems or pathways. This

hampers our ability to understand how different hallmarks interact over time to shape the

aging trajectory.

Here we propose a generalized systems biology framework that integrates multi-omics

data with dynamical systems modeling to capture the nonlinear interactions between bio-

logical subsystems. We illustrate the approach using a synthetic dataset designed to mimic

realistic patterns of decline in metabolic efficiency, proteostasis, DNA repair capacity, im-

mune regulation, and signaling fidelity.

2 Related Work

Systems biology approaches to aging have emerged in recent years, aiming to integrate

diverse biological signals into unified models [2, 3]. Network-based analyses have identified

molecular hubs that change with age, while mathematical models have been used to capture

feedback loops between hallmarks. However, these efforts are often domain-specific (e.g.,

focused solely on mitochondria or immune function) and lack a generalized structure that

can be adapted to any biological subsystem.

Multi-omics integration methods, such as canonical correlation analysis, partial least
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squares, and matrix factorization, have been applied to aging studies to link molecular layers

[4]. Dynamical systems approaches have modeled aging as a set of coupled decline processes

[5], but few have incorporated omics-scale variables.

3 Modeling Framework

We conceptualize the aging organism as a network of n interacting functional subsystems,

each described by a time-dependent state variable xi(t) ∈ [0, 1] representing its normalized

functional capacity at chronological age t. A value xi(t) = 1 corresponds to full youthful

function, while xi(t) ≈ 0 corresponds to near-complete loss of function. Representative

examples include:

• x1(t): metabolic efficiency (ATP production per substrate unit)

• x2(t): proteostasis capacity (protein folding and degradation fidelity)

• x3(t): DNA repair efficiency (capacity to correct genomic lesions)

• x4(t): immune regulation strength (balance of pro- and anti-inflammatory responses)

• x5(t): signaling fidelity (accuracy of hormone and neurotransmitter signaling)

3.1 Deterministic Core Dynamics

The baseline decline of subsystem i in the absence of external perturbations or cross-system

effects is modeled as an exponential decay process with intrinsic rate αi > 0. However, the

functional trajectory of each subsystem is modulated by its interactions with the others. We

postulate the general form:

dxi

dt
= −αixi −

n∑
j=1
j ̸=i

βij xixj + Ii(t), (1)

where:
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• αi: intrinsic decline rate of subsystem i due to internal wear, stochastic damage, or

baseline molecular drift.

• βij: coupling coefficient from subsystem j to i, representing how the decline of j

accelerates deterioration of i. Symmetry (βij = βji) is not assumed.

• Ii(t): exogenous inputs, which may represent targeted interventions, environmental

stressors, or stochastic fluctuations.

The cross-term −βijxixj captures multiplicative coupling: the joint degradation of i and

j produces a compounding effect on the decay rate of i. This term formalizes the idea of

synergistic aging, where co-decline of subsystems is more damaging than independent decay.

3.2 Matrix Formulation

Let x(t) = (x1(t), . . . , xn(t))⊤ denote the state vector. Define the diagonal matrix A =

diag(α1, . . . , αn) and the coupling matrix B = [βij] with zeros on the diagonal. Equation (1)

can be written compactly as:

ẋ = −Ax − x ⊙ (Bx) + I(t), (2)

where ⊙ denotes the Hadamard (elementwise) product and I(t) is the vector of intervention

inputs.

3.3 Nonlinear Interaction Topology

The signs and magnitudes of βij encode the aging network topology. Positive βij represents

detrimental propagation (decline in j accelerates decline in i), while negative βij could rep-

resent protective or compensatory interactions (decline in j triggers adaptation in i). This

allows the model to represent both damage cascades and adaptive cross-protection, consistent

with biological redundancy.
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If the network is fully connected with βij > 0 for all i ̸= j, the system tends toward

synchronous collapse, where all subsystems decline at increasingly similar rates. Sparse

connectivity, or mixed-sign βij, may instead yield heterogeneous aging trajectories.

3.4 Equilibria and Stability

In the absence of interventions (Ii(t) ≡ 0), the trivial equilibrium x∗ = 0 represents complete

systemic failure. However, partial equilibria can exist if certain βij < 0 create stabilizing

loops. Linearizing (2) around an equilibrium x∗ yields:

δẋ = − [A + diag(x∗)B + diag(Bx∗)] δx, (3)

where δx is a perturbation from equilibrium. The eigenvalues of this Jacobian determine

local stability: all must have negative real parts for stability.

3.5 Stochastic Extension

Biological systems are inherently noisy due to random molecular events. To capture this, we

extend (1) to a stochastic differential equation (SDE) form:

dxi =
−αixi −

∑
j ̸=i

βijxixj + Ii(t)
 dt + σixi dWi(t), (4)

where Wi(t) are independent Wiener processes and σi controls the amplitude of multiplicative

noise. This formulation allows for the computation of first-passage times to critical thresholds

(e.g., xi(t) < θi), which are relevant for defining onset of functional impairment.

3.6 Intervention Optimization

One application of this framework is the optimal allocation of limited intervention resources.

Suppose a fixed budget R can be distributed across subsystems as control inputs ui(t) ≥ 0

5



with ∑
i ui(t) ≤ R. The intervention term becomes Ii(t) = γiui(t), where γi is the efficiency

of translating resource ui into functional gain for subsystem i. An optimal control problem

can then be posed:

max
{ui(t)}

∫ T

0
U(x(t)) dt s.t. (1),

n∑
i=1

ui(t) ≤ R, (5)

where U(x(t)) is an aggregate healthspan utility function. Pontryagin’s Maximum Principle

or dynamic programming can be applied to solve for the optimal ui(t) profiles.

3.7 Interpretation

This theoretical formulation unifies concepts from systems biology, network theory, and con-

trol engineering. It explicitly models both direct subsystem decline and interaction-mediated

acceleration, capturing the observed phenomenon that aging often proceeds slowly at first,

but accelerates as damage in one domain cascades into others. By adjusting parameters αi,

βij, and σi to empirical data, this framework can yield individualized predictive models of

aging trajectories and inform personalized multi-target interventions.

4 Methods

We generated synthetic data by numerically integrating Eq. (1) for n = 5 subsystems over a

100-year lifespan. Parameters were chosen to produce realistic aging curves with accelerating

decline in later life. Multi-omics datasets were simulated by mapping subsystem states to

omics readouts via nonlinear functions with added Gaussian noise.

Correlation analysis, principal component analysis (PCA), and network inference were

performed on the synthetic multi-omics data to assess the model’s ability to recover subsys-

tem interactions.
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5 Results

5.1 Simulated Aging Trajectories

Figure 1 shows simulated functional capacities for the five subsystems. All decline over time,

with proteostasis and immune function exhibiting the steepest late-life drops.
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Figure 1: Simulated functional capacity trajectories for five biological subsystems.

5.2 Subsystem Correlation Network

Figure 2 illustrates the inferred correlation network among subsystems from the simulated

omics data.

6 Discussion

Our simulations reveal that functional coupling between biological subsystems acts as a non-

linear amplifier of aging effects. When a single subsystem experiences a decline—whether due

to accumulated molecular damage, regulatory drift, or environmental stress—its impaired

function propagates through shared metabolic and signaling networks, thereby accelerating
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Figure 2: Inferred correlation network among subsystems. Edge labels represent correlation
coefficients.

deterioration in other subsystems. For example, reduced proteostasis capacity not only leads

to misfolded protein accumulation but also heightens oxidative stress, which subsequently

damages mitochondrial components, DNA repair machinery, and metabolic enzymes. This

creates a feedback loop where declining energy metabolism further compromises proteosta-

sis, thereby reinforcing the cycle of damage. Such synergistic decline may underlie the

well-documented acceleration of functional loss in late life and could explain why interven-

tions targeting only one pathway often yield transient or incomplete benefits. The coupling

patterns observed here are consistent with network-based theories of aging, which posit that

the resilience of the organism depends on the connectivity and redundancy of its functional

modules.
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7 Implications

By explicitly modeling the interdependence of biological subsystems, our framework pro-

vides a quantitative basis for prioritizing biomarkers that are maximally informative about

the organism’s overall biological age. Subsystems with high network centrality or strong

causal influence on others—such as mitochondrial function, genomic stability, or proteosta-

sis—emerge as critical control points whose decline disproportionately impacts systemic ag-

ing trajectories. This insight has two practical consequences. First, biomarker discovery

can be guided toward measures that reflect both intrinsic vulnerability and network influ-

ence. Second, the model supports in silico experiments for testing multi-target intervention

strategies, allowing researchers to assess whether simultaneous partial restoration of several

subsystems yields greater lifespan or healthspan gains than full restoration of a single sub-

system. Such simulations can complement empirical approaches, especially when candidate

interventions are costly, invasive, or require long-term validation.

8 Limitations and Future Work

While our demonstration relies on synthetic data to illustrate the feasibility and flexibil-

ity of the framework, real-world applications will require fitting the model to large-scale

longitudinal multi-omics datasets. This would enable parameter estimation for subsystem

interaction strengths, degradation rates, and compensatory responses directly from empiri-

cal observations. Furthermore, our current implementation assumes deterministic dynamics,

which may oversimplify the inherently stochastic nature of molecular damage accumulation

and repair. Incorporating stochastic differential equation formulations would allow for vari-

ability across individuals and more realistic predictions of age-at-onset for functional decline.

Another extension would involve modeling adaptive responses, such as upregulation of repair

mechanisms under stress, and spatial compartmentalization, which captures tissue-specific

aging patterns and organ-level interactions. Finally, integrating intervention cost models and
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off-target effects could improve the translational relevance of predicted optimal intervention

strategies.

9 Conclusion

We have presented a generalized systems biology framework that integrates multi-omics data

with nonlinear dynamical systems modeling to study the aging process. By capturing the

complex, reciprocal influences between biological subsystems, the model offers a mechanistic

explanation for accelerated decline in late life and highlights potential leverage points for

intervention. This approach moves beyond single-pathway perspectives, enabling the iden-

tification of high-impact biomarkers, prediction of intervention outcomes, and generation

of testable hypotheses about aging mechanisms. In doing so, it establishes a quantitative

foundation for precision geroscience—where interventions are tailored not only to molecular

targets but to the network architecture of aging itself.
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