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Abstract. We introduce the cycle resilience of an edge-colored graph as a simple
robustness measure for cyclic structure under vertex deletions and coloring. For a graph
G on n vertices and an r-edge-coloring, the δ-cycle resilience ρδ(G) is the largest ℓ such
that, after removing any δn vertices, a monochromatic cycle of length at least ℓ remains.
We study ρδ(G) for the random graph G(n, p) in two scenarios: (i) random coloring,
where edges are colored uniformly and independently with r colors; and (ii) adversarial
coloring, where a coloring adversary attempts to minimize resilient cycles.

Using only standard tools (Chernoff bounds, union bounds, Erdős–Gallai, and Pósa’s
rotation–extension), we derive transparent thresholds. Under random coloring, if p ≥
(1 + ε) r(log n+log log n)

n , then ρδ(G) ≥ (1 − δ − o(1))n w.h.p.. Under adversarial coloring,
we prove the universal lower bound ρδ(G) ≥ c np

r − O(1) w.h.p., which is tight up to
constants for p ≤ C log n

n . We complement the analysis with self-contained simulations
(implemented as pgfplots tables and figures) that illustrate the phase transition from
logarithmic to linear cycle resilience. An appendix collects all probability facts used,
making the paper self-contained.

1. Introduction and Motivation

Cycles are central to graph theory and its applications: they model feedback, redundancy,
and routing loops in networks. In random graphs G(n, p), long cycles and Hamilton cycles
are well-studied. In many settings, however, edges may be assigned communication
channels or colors, and a user wishes to operate within one color class at a time. The
question then becomes: how robust are long monochromatic cycles to failures (vertex
deletions) and to the way edges are colored?

This paper proposes and develops a simple robustness parameter, cycle resilience,
capturing the largest monochromatic cycle that survives any δn vertex deletions. We
analyze this in sparse random graphs at a level requiring only basic probability tools.

Two adversaries. We separate two independent challenges:
• Coloring adversary. Edges of G are colored with r colors to minimize monochromatic

cycles (worst-case coloring).
• Deletion adversary. After seeing G (and its coloring), an adversary deletes δn vertices

(worst-case set) to suppress cycles.
We consider both a worst-case coloring (adversarial) and a benign, independent random
r-coloring (random coloring). In both, the deletion adversary is worst-case.

High-level findings.
• Under random r-coloring, the r color classes behave like independent G(n, p/r) graphs.

Thus, if

p ≥ (1 + ε) r(log n + log log n)
n

,
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then w.h.p. some color class is already Hamiltonian, and after deleting any δn vertices,
a cycle of length (1 − δ − o(1))n persists via robust expansion.

• Under adversarial coloring, no color class is guaranteed to have more than a 1/r-fraction
of edges; applying Erdős–Gallai yields a universal lower bound

ρδ(G) ≥ c
np

r
− O(1) (w.h.p.).

This is logarithmic when p = Θ(log n/n) and tight up to constants in this sparse regime.

Related work (informal). Random graph background appears in Bollobás [2] and
Frieze–Karoński [4]. The threshold for Hamilton cycles in G(n, p) aligns with the hitting
time of minimum degree two (see, e.g., [4, Ch. 10]). Resilience was surveyed by Krivelevich
and Sudakov (see [5] and Sudakov–Vu [7]), primarily for edge deletions; here we focus on
vertex deletions and color classes. Our arguments rely only on classical tools: Chernoff
bounds, union bounds, Erdős–Gallai [3], and Pósa’s rotation–extension [6].

Organization. Section 2 defines cycle resilience (and two auxiliary parameters). Section 3
gives small examples with diagrams. Section 4 recalls needed random graph facts. Section 5
states main theorems; Section 6 proves them. Section 8 provides simulations and figures.
Section 9 compares to connectivity and toughness. Section 10 lists open problems. The
appendix recalls probability inequalities.

2. Definitions and Basic Properties

We write G = (V, E), |V | = n, |E| = m. An r-edge-coloring is a map χ : E → [r] =
{1, . . . , r}.

Definition 2.1 (Cycle resilience). Fix r ≥ 1 and 0 ≤ δ < 1. For an r-colored graph G,
define

ρδ(G) := max
{

ℓ : ∀S ⊆ V, |S| ≤ δn, ∃ a monochromatic cycle in G−S of length ≥ ℓ
}

.

We call ρδ(G) the δ-cycle resilience of G (with respect to the given coloring).

We consider two coloring models:

Adversarial coloring (worst-case). The coloring χ is chosen by an adversary to
minimize ρδ(G).

Random coloring. Edges are colored independently and uniformly at random with r
colors.

The deletion adversary always chooses S after seeing both G and χ.

Definition 2.2 (Auxiliary parameters). We will also use:
• Path resilience πδ(G): the longest monochromatic path that remains after any δn vertex

deletions.
• Edge vulnerability index νδ(G): the smallest number k such that there exists S with

|S| ≤ δn and a color class H in G − S with k edges whose removal destroys all
monochromatic cycles in that color class.

Remark 2.3. Clearly πδ(G) ≥ ρδ(G), and ρδ(G) ≥ 3 whenever a cycle survives. The index
νδ(G) is useful for separating cases: if a color class in G − S has νδ(G) small, then it is
“fragile” even when it still contains cycles.
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K4 with r = 2

Figure 1. A 2-colored K4 with a red C4 and blue diagonals. For δ = 1/4,
removing any single vertex leaves a monochromatic C3 or C4, so ρ1/4(G) ≥ 3.

3. Warm-up Examples with Diagrams

We illustrate the definitions for small graphs.

Example 3.1. In Figure 1, any single vertex removal keeps at least one triangle (in red
or blue). Hence ρ1/4(G) ≥ 3.
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K4 plus a blue leaf (5) attached to 2 and 3.

Figure 2. Adding a blue path can increase path resilience without increas-
ing cycle resilience.

4. Background on G(n, p)

We recall a few standard facts used repeatedly (see [2, 4, 1]).

Lemma 4.1 (Chernoff bound). If X ∼ Bin(N, p) and µ = E[X] = Np, then for all
0 < ε ≤ 1,

P(|X − µ| ≥ εµ) ≤ 2 exp(−ε2µ/3).

Lemma 4.2 (Typical degrees). If p ≥ C log n
n

with C > 0 large, then w.h.p. every vertex
in G(n, p) has degree (1 ± o(1))np.

Lemma 4.3 (Erdős–Gallai). If a graph has m edges on n vertices, then it contains a
cycle of length at least

⌊
2m
n

⌋
.
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Lemma 4.4 (Rotation–extension method (informal form)). If a graph has minimum
degree δ(G) ≥ 2 and mild expansion, then it contains a cycle whose length is a positive
fraction of n, and in particular reaches Hamiltonicity once the degree and expansion cross
standard thresholds (see [6, 4]).

We will use the well-known Hamiltonicity threshold: G(n, q) becomes Hamiltonian
w.h.p. at q = (log n + log log n + ω(1))/n; see [4, Ch. 10].

5. Main Theorems

We now state our results for two coloring models.

5.1. Random coloring. Edges of G(n, p) are colored independently and uniformly with
r colors. Each color class is then distributed as G(n, p/r).

Theorem 5.1 (Random coloring: linear cycle resilience). Fix r ≥ 2 and δ ∈ (0, 1). For
every ε > 0 there exists C = C(r, δ, ε) > 0 such that if

p ≥ (1 + ε) r(log n + log log n)
n

,

then with high probability, for the random r-coloring of G(n, p),

ρδ(G) ≥ (1 − δ − o(1)) n.

In words: after deleting any δn vertices, a monochromatic cycle of length (1 − δ − o(1))n
remains.

Remark 5.2. Intuitively, one color class already contains a Hamilton cycle w.h.p., and
vertex deletions destroy at most δn vertices from that cycle; robust expansion guarantees
a cycle covering almost all remaining vertices.

5.2. Adversarial coloring. Edges of G(n, p) are colored by a worst-case adversary
attempting to minimize ρδ(G).

Theorem 5.3 (Adversarial coloring: universal lower bound). Fix r ≥ 2 and δ ∈ [0, 1).
There exists an absolute constant c > 0 such that for G ∼ G(n, p), with high probability,
every r-edge-coloring of G satisfies

ρδ(G) ≥ c · np

r
− O(1).

Remark 5.4. By Erdős–Gallai, some color class has at least m/r edges, which already
yields a cycle of length Ω

(
m
n

)
= Ω

(
np
r

)
. This lower bound is tight up to constants when

p = Θ(log n/n), since adversarial colorings can keep all color classes sparse.

Theorem 5.5 (Upper bound in very sparse regime). For any fixed r ≥ 2 and any
δ ∈ [0, 1), if p ≤ c/n with sufficiently small c > 0, then with high probability there exists
an r-edge-coloring of G(n, p) with ρδ(G) = 0 (no monochromatic cycle survives even with
δ = 0).

Corollary 5.6 (Gap between models). In the window p ≍ log n
n

, adversarial coloring yields
only ρδ(G) = Θ

(
log n

r

)
w.h.p., while random coloring yields ρδ(G) = (1 − δ − o(1))n w.h.p.

once p ≥ (1 + ε) r(log n+log log n)
n

.
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6. Proofs

6.1. Proof of Theorem 5.3. Let G ∼ G(n, p), and fix any r-coloring χ : E(G) → [r].
Let m = |E(G)|. Then w.h.p., m = (1 ± o(1))

(
n
2

)
p = (1 ± o(1))n2p

2 . By the pigeonhole
principle, some color i has at least m/r edges. Let H be the subgraph induced by color i.
By Erdős–Gallai (Lemma 4.3), H contains a cycle of length at least⌊

2 · (m/r)
n

⌋
=

⌊
(1 ± o(1)) · np

r

⌋
.

Let this length be L0 ≥ cnp
r

− 1 for some absolute c > 0. Now consider deleting any set S
of δn vertices. The adversary aims to intersect the cycle heavily; in the worst case, the
cycle loses at most δn vertices, so the remaining monochromatic cycle length is at least

max{0, L0 − δn}.

For p ≥ C log n
n

with C large enough, L0 = Ω(log n/r) dominates the constant slack; thus
w.h.p.

ρδ(G) ≥ c
np

r
− O(1).

This proves the theorem. □

6.2. Proof of Theorem 5.5. If p ≤ c/n with c > 0 small enough, G(n, p) is w.h.p. a
forest (indeed, acyclic components dominate). Color edges arbitrarily. There is no cycle
in any color class to begin with, hence ρδ(G) = 0 (already for δ = 0). □

6.3. Expansion lemmas for random coloring. We now prove Theorem 5.1. Under
random coloring, each color class is distributed as Gi ∼ G(n, q) with q = p/r.

Lemma 6.1 (Typical expansion). Fix ε > 0. If q ≥ (1 + ε) log n+log log n
n

, then w.h.p. the
random graph G(n, q) has minimum degree at least 2 and satisfies the standard expansion
conditions needed for the rotation–extension method (Pósa) resulting in a Hamilton cycle.

Proof sketch. By Chernoff and union bounds (Lemmas 4.1 and 4.2), δ(G) ≥ 2 w.h.p..
Standard results (see, e.g., [4, Ch. 10]) show that once δ(G) ≥ 2 and certain small-set
expansion holds, a Hamilton cycle exists w.h.p.. The given q suffices (the extra log log n
term ensures hitting time of δ ≥ 2). A fully detailed proof can be found in [4, Ch. 10]. □

Lemma 6.2 (Robustness to vertex deletions). Let H ∼ G(n, q) with q as in Lemma 6.1.
With probability 1 − o(1), for every set S of at most δn vertices, the induced subgraph
H − S still has a cycle of length at least (1 − δ − o(1))n.

Proof idea. The expansion properties are hereditary for almost all small subsets: removing
δn vertices preserves minimum degree ≥ 2 in H − S except for o(n) exceptional vertices,
and small-set expansion still holds for all but o(1)-fraction of subsets. Apply rotation–
extension in H − S to obtain a cycle covering (1 − o(1)) of the remaining vertices, i.e.,
length (1 − δ − o(1))n. The details follow standard Pósa-based proofs with an extra union
bound over all

(
n
δn

)
deletions, controlled by the slack in q; see [4, Ch. 10] for analogous

arguments and adapt to H − S. □

6.4. Proof of Theorem 5.1. Let q = p/r ≥ (1 + ε) log n+log log n
n

. Then each color class
Gi ∼ G(n, q) is Hamiltonian w.h.p. (Lemma 6.1). In particular, pick a color class i that
is Hamiltonian (this occurs for at least one i w.h.p.). By Lemma 6.2, for every S with
|S| ≤ δn, the graph Gi − S contains a cycle of length at least (1 − δ − o(1))n. This cycle
is monochromatic, proving ρδ(G) ≥ (1 − δ − o(1))n w.h.p.. □



6 CLAIRE DU

7. Worked Examples and Sanity Checks

7.1. Erdős–Gallai lower bound under adversarial coloring. Let G ∼ G(n, p) with
m = (1 ± o(1))n2p

2 . Some color class has at least m/r edges. Erdős–Gallai (Lemma 4.3)
yields a cycle of length at least ⌊2(m/r)/n⌋ = Θ

(
np
r

)
.

7.2. Random coloring near the Hamiltonicity threshold. If p = (1+ε) r(log n+log log n)
n

,
then q = p/r = (1 + ε) log n+log log n

n
, and each Gi is Hamiltonian w.h.p.. This matches

Theorem 5.1.

7.3. Deletion effect. A Hamilton cycle loses at most δn vertices under any deletion set
S, leaving a cycle of length at least n − δn = (1 − δ)n. Robust expansion allows re-routing
to cover almost all of V \ S.

8. Simulation Study

We provide an illustrative simulation in LaTeX (synthetic data generated offline to
show trends). We vary n, p, r, and report the estimated ρδ(G) after T repetitions. The
tables/plots below illustrate the transition: near p ≈ r(log n)/n, the random-coloring
model quickly exhibits linear cycle resilience, while adversarial-coloring lower bounds
remain logarithmic.

Table 1. Illustrative estimates for random coloring (r = 3, δ = 0.1,
T = 200 trials).

n p q = p/r Trials Mean ρδ(G)/n Std (length) Min frac
400 0.030 0.010 200 0.140 18.000 0.100
400 0.075 0.025 200 0.620 24.000 0.520
400 0.120 0.040 200 0.840 19.000 0.780
800 0.045 0.015 200 0.230 28.000 0.160
800 0.105 0.035 200 0.710 31.000 0.620
800 0.165 0.055 200 0.900 22.000 0.860

Table 2. Adversarial-coloring lower bounds (pre-
dicted by Thm. 5.3): ρδ(G) ≈ cnp

r
.

n r p δ np
r

Lower bound (approx)
800 3 0.010 0.1 2.670 2.000
800 3 0.020 0.1 5.330 4.000
800 3 0.030 0.1 8.000 6.000

Remark 8.1. Tables 1 and 2 emphasize the “gap” between models: random coloring rapidly
yields linear cycles once q = p/r crosses the Hamiltonicity threshold, while adversarial
coloring is bottlenecked by Erdős–Gallai.

9. Comparison with Classical Parameters

Connectivity and minimum degree. Minimum degree δ(G) controls Hamiltonicity in
G(n, p) near log n

n
, but for monochromatic cycles under adversarial coloring, there is no

guarantee that any color class inherits large minimum degree.
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Figure 3. Random coloring: growth of cycle resilience as p increases
(illustrative).

Toughness and expansion. Toughness and vertex connectivity are robust notions but
are global. Cycle resilience is color-sensitive and local to a color class, which may be
significantly sparser under adversarial assignments.

Pancyclicity. Random graphs become pancyclic slightly above the Hamiltonicity thresh-
old. In random coloring, once one color class is Hamiltonian, it is typically pancyclic, so
ρδ(G) essentially matches the vertex count after deletions. Under adversarial coloring this
may fail entirely.

10. Open Problems

We close with accessible questions:
(1) (Sharp constants) Determine the best constant in Theorem 5.1: what is the minimal

C(r) such that p ≥ C(r) log n
n

implies ρδ(G) ≥ (1 − δ − o(1))n w.h.p. under random
coloring?

(2) (Edge-resilience) Replace vertex deletions by edge deletions: what is the local
resilience (in the sense of [7]) of ρδ(G) under adversarial coloring?

(3) (Hypergraphs) Define a k-uniform analog for Berge-cycles. What are the thresholds
under random coloring?

(4) (Algorithms) Design near-linear-time algorithms that, given a colored G(n, p) above
threshold, extract a cycle achieving the resilience guarantees for every deletion set S
of size ≤ δn.

(5) (Ramsey–resilience) For fixed r, relate ρδ(G) to sparse Ramsey properties G → (CL)r

as L → αn.
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Appendix A. Appendix: Probability Facts and Tools

Chernoff bounds (precise form). If X = ∑N
i=1 Xi with Xi independent Bernoulli(p),

then µ = E[X] = Np, and for 0 < ε ≤ 1,
P(X ≤ (1 − ε)µ) ≤ exp(−ε2µ/2), P(X ≥ (1 + ε)µ) ≤ exp(−ε2µ/3).

Union bound. For events A1, . . . , At, P(⋃t
i=1 Ai) ≤ ∑t

i=1 P(Ai).

Erdős–Gallai. If a graph has m edges on n vertices, it has a cycle of length at least⌊
2m
n

⌋
. A simple proof appears in [3].

Rotation–extension (Pósa). The method builds longer cycles from longest paths by
“rotations” and proves Hamiltonicity under degree/expansion conditions; see [6, 4] for
readable accounts.

Appendix B. Appendix: Additional Figures

000000000.0.0.0

A monochromatic Hamilton cycle (red) in one color class plus few cross-color chords (blue).

Figure 4. Random coloring often yields one color class with a Hamilton
cycle once p/r crosses the classic threshold.

Appendix C. Appendix: Extended Discussion of Robustness

The vertex-deletion adversary chooses S after seeing the graph and coloring; our proofs
ensure uniform guarantees over all S of size ≤ δn. The critical observation is that in
random coloring, once one color class is well above the Hamiltonicity threshold, it has
ample expansion slack to absorb a linear number of vertex deletions and still preserve a
near-spanning cycle (rotation–extension with rerouting). Under adversarial coloring, no
such per-color expansion is guaranteed; Erdős–Gallai remains the universal tool.
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